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The research presented herein demonstrates the feasibility of predicting ultimate su-engzhs in simple

composite structures through a neural network analysis of their acoustic emission (AE) amplitude

distribution data. A series of eleven ASTM D-3039 unidirectional graphite/epoxy tensile samples were

loaded to failure to generate the amplitude diswibutions for this analysis. A back propagation neural

network was trained to correlate the AE amplitude dismibufion signatures generated during the first 25%

of loading with the ultimate strengths of the samples. The network was trained using two sets of inputs:

(I) the statistical parm'neters obtained from a WeibuIl distribution fit of the amplimde distribution data,

and (2) the event frequency (amplitude) distribution itself. The neural networks were able to predict

ultimate strengths with a worst case error of -8.99% for the Weibull modeled amplitude distribution data

and 3.74% when the amplitude distribution itself was used to main the network. The principal reason for

the improved prediction capability, of the latter technique lies in the ability, of the neural network to

extract subtle features from within the amplitude dismbution.

1.0 INTRODUCTION

Previous research [1] has indicated that ultimate s_-engths could be predicted by mathematically

modeling the amplitude distribution of composite tensiie specimens with a Weibull diswibut-ion. The

analysis demonstrated that an equation of the form. o u = C O + Clb + C20 + C3b*0 cou!d be used to

predict ultimate strengths, where "b" and "0" are the Weibull distribution shape parameters and the

density function is given by f(x) = (b/0) * (A/0) b-1 * exp(A/0) b. The Weibull parameters were therefore

proposed as inputs to a back propagation neural network. Research has also demonstrated [2] that a

back propagation neural network model of the AE amplitude data collected du_ng the initial stages of

loading of 2195 aluminum-lithium alloy weldments could be used to predict their ultimate su'ength.

There the number of AE hits recorded at 1 dB inte_,a/s were used as the input vectors to the neura/

network. It was thought that a similar approach might work with these composite tensile coupons.

2.0 NEURAL NETWORK ANALYSIS

NeuralWorks Professional I2/'PLUS software, by NeuralWare, Inc., was used to develop the back

propagation neural networks for this paper. Input data was fed into the network through an array of

input neurons. Each input neuron was then fully connected by a series of weighting functions to a layer

of hidden neurons and these in turn were fully connected to the output neuron. A bias neuron was weight

connected to the hidden and output layer neurons to sen, e as a constant reference or offset value in the
network.
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The weighting functions serve as the memory of a trained network by providing a multiplier between a

preceding neuron's output value and an ensuing neuron's input value. A back propagation neural network

works by minimizing the error between the generated (neural) output and the desired (actual) output

using a gradient descent approach. Randomized weights are initially given to the inter'connections of the

network and an output value is calculated in response to an input data set. An error is then calculated

and normalized so that a transfer function can determine the change, or delta, to back propagate to each

of the connections in the network. This process is then repeated until the error reaches a desired

threshold.

Six AlE data sets were generated by loading samples at a rate of 500 lbs/minute to failure, while the

AE activity was monitored with a single Physical Acoustics Corporation (PAC) R15 transducer and PAC

LOCAN-AT. Only the portion of the AE amplitude data collected up to 25% (1500 lbs) of the expected

failure load were supplied as inputs to the statistical analysis and neural network models. Five additional

samples were loaded to failure and analyzed separately to provide a test base for the ultimate strength

prediction equation models.

The first neural network was trained using the Weibull parameters of the modeled amplitude

distribution as inputs to demonstrate any sirnilmties or differences with the results of the previous

multivariate statistical analysis. A two layer network consisting of only an input and output layer was

used, since it was known from the previous experimental work [1] that the parameters were linearly

related to the ultimate strength of the samples. The results of the back propagation network trained with

the Weibull parameters is shown in Table 1. The WeibuU parameter "b" was found to be the primary

classifier for predicting the ultimate strength of the samples with a maximum -8.99% error. On the other

hand when the Weibull parameter "0" was used in the product "b*e" only a slightly bener prediction

(-6.28% error) was made with a relatively large (-8.39%) error in the training set. The previous

experimental work [1] yielded a worst case error of 5.39% for the sampled tested. Thus, the neural

network approach of mapping the Weibull parameters to the known ultirv_te strengths was not as

accurate as the multivariate statistical analysis.

Specimen
Number

Actual

Strength

&si)
234.8

b 19"0 Event Fr_uency
l:_edicted % Error % Error % error

Strength

234.95

Pre,Sictexl

Strength

236.111+ 0.06 0.56

2+ 227.6 226.50 -0A8 225.09 -1.10

3+ 237.2 236.31 -0.38 235.52 -0.71

4+ 218.8 209.18 4.40 200.45 -8.39

Predicted

Strength
&si)

1.0'5237.26

226.88 -0.32

233.61 -1.51

218.73 -0.03

5+ 14-4.0 138.49 -3.55 142.72 -0.89 141.81 -1.52

6+ 176.7 182.49 3.27 180.09 1.92 178.37 0.95
9 A7 ,24.. 204.22 224.68 0.13 228.87 1.99

8 215.2 213.57

9 233.0 232.99

10 192.4 201.87

11 138.0 143.08

220.96 5.46 216.75

-8.99
i

-0.76

1.40
r

-6.28

0.69

0.00 236.25

4.92 180.33

138.95

241.71

186.81

140.143.68

0.81

3.74

-2.91

] .55

Table 3. Neural network analysis results.
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It Was thought that a better ultimate stren_h prediction could be obtained by training the network

with the more detailed event frequency (amplitude) distribution. The individual event count found at

each (1 d.B) amplitude interval would serve as the input to the neural network. For this approach a three

layer network was employed. The hidden layer allowed the network to characterize the subtle variations

in the distribution and relate them to the known ultimate strengths in the training set. The ne_'ork

architecture was built around a 23 neuron input layer, an 11 neuron hidden layer, a fully connected bias,

and a single output layer neuron for predicting ultimate strengths. The subtle variations found within the

amplitude distribution were correlated w'ith the ultimate strength of the training samples (by the hidden

layer's weighted connections) to field a worst case error of 3.74%.

3.0 CONCLUSIONS

The experimental work in this paper demonstrated that a back propagation neural network can be

used to predict ultimate strengths in gaphiteJepoxy tensile specimens by using the event frequency

(amplitude) distribution data as the input vectors with theh" known ultimate strengths as the output

vectors. Only the low amplitude portion of the AE data taken up to 25% of the expected failure strength,

(from a series of six training specimens) were used in the input training vectors. The hidden layer of the

neum] network was able to extract and map the subtle features of the amplitude distribution data to the

known failure strengths of the samples tested. The technique permitted a worst case ultimate strength

prediction error of 3.74%. This is somewhat lower than the 5.39% worst case error from the previous

statistical analysis [1].

The neural network was not able to correlate the Weibull distribution parameters of the amplitude

data with the ultimate strengths of the samples as well as the multivariate statistical analysis. Due to the

smoothing effect of the Weibull model on the event frequency data, the details required to generate

accurate ultimate strenTLh predictions were not present. The Weibull distribution modeling parm'neters

are very. sensitive to aberrations in the event frequency data set. This leads to the formation of "noisy"

input data. Also, with the limited amount of information present in the input vector Cb" and/or "b*0")

the neural network has a tendency to memorizing the training data, this then results in higher prediction

errors (especially With "noisy" input data).
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